

Computational methods for data integration

Xin Hu, PhD

Assistant Professor of Medicine Division of Pulmonary, Allergy, Critical Care and Sleep Medicine Emory University Overview of systems biology and common methods for omics studies

Design of integrative omics study and major approaches:

- 1. Pathway-based approach
- 2. Network-based approach

xMWAS

Other advanced machine learning tools

Systems biology studies biological systems, not isolated components but their interactions as well as emergent behavior. Approach: Holistic as opposed to subsystems Characteristics: Computational and mathematical modeling; can provide quantitative analysis

Beyond reductionism – systems biology gets dynamic

http://www.wiringthebrain.com/2019/09/beyond-reductionism-systems-biology.html

Complex and Dynamic Nature of Biological Systems

Study of the individual parts of metabolism is difficult because perturbing a single metabolic pathway may impact the function of a large part of the complete network.

Nielsen 2017 Systems Biology of Metabolism. Annu Rev Biochem

Genomics: Single nucleotide polymorphisms (SNPs), copy number variants (CNVs), loss of heterozygosity variants, genomic rearrangements and rare variants.

Epigenomics: DNA methylation, histone modification, chromatin accessibility, transcription factor binding.

Transcriptomics: Gene expression, alternative splicing, long-coding RNA, microRNA

Top-down Approach in Systems Biology with Omics

Proteomics: Protein abundances, identification and quantification of posttranslational modifications

Metabolomics: Catabolic products, anabolic precursors, intermediates, nutrients, environmental chemicals, microbiome products.

The human body contains almost ~20,000 proteins, 20,000–22,000 protein-coding genes, ~30,000 mRNAs, 2300 miRNAs, and 114,100 metabolites, respectively.

"Information Overload": >10,000 variables per –omics experiment

The number of functionally relevant interactions between the components of this network (i.e. the links) is expected to be much larger.

Biswas and Chakrabarti 2020 Front Oncol.

"**large p, small n**" **problem**: Number of variables (*p*) measured >> Number of experimental units (*n*) (Johnstone and Titterington, 2009)

Data (dimension) Reduction

• **Principal component analysis (PCA)**: Orthogonally transforms the original coordinates of a data set into a new set of coordinates called principal components (PC). PC1 has the largest possible variance; each succeeding PC has the highest possible variance under the constraint that it is orthogonal to (i.e. uncorrelated with) with preceding components.

Null Hypothesis Significance Testing

False discovery rate control for Type I error

Bonferroni, Benjamini-Hochberg or other procedures reduce the α for each test to a value much smaller than 0.05, so that the experiment-wide error is not as inflated due to the large number of comparisons being made.

- Increase the probability of Type II errors
- Implies that to conclude that <u>a metabolite is</u> <u>affected by a treatment when it is not</u> is much worse than to conclude that <u>a metabolite is not</u> <u>affected by a treatment when, in reality, it is</u>.

Statistical Significance vs Biological Significance

A two-step statistical strategy:

Step 1: Avoid type 2 error by selecting all features at raw P<0.05.

Step 2: Follow this with pathway enrichment, which uses permutation testing (pathway P<0.05) to determine whether the features initially selected at raw P<0.05 are enriched in pathways.

This second test protects against type 1 error because multiple metabolites in the pathway are changed, thereby providing confidence that the metabolites in this pathway are relevant.

Alternatively, ranking and prioritizing of candidates based on cumulative evidence across data types and their variable can support more robust feature selection, such as GSEA (Subramanian et al. 2005), integRATE (Eidem et al. 2018), but are limited to gene/protein data analysis.

Contribution: Features contributing the most to separation of groups Different from statistical significance!!

PLS-DA (Partial least squares discriminant analysis) is a supervised classification method. This means that class labels (Y) is used during the classification process. PLS-DA projects the data (X) into a low-dimensional space that maximizes the separation between different groups of data in the first few dimensions. PLS-DA also produces variable importance measures (**VIP**).

Why OMICS Data Integration?

Hu et al. 2020 Omics integration for mitochondrial systems biology. Antioxid Redox Signal Nielsen 2017 Systems biology of metabolism. Annu Rev Biochem

Why OMICS Data Integration?

The regulatory mechanisms are distributed across different types of bio-entities.

Systems level analysis provides:

- More comprehensive overview of underlying mechanisms.
- Interactions between biomedical entities.

Combining multiple types of data collected on the same subjects compensate for noise or unreliable information in a single data type.

More confidence in results if multiple sources of evidence corroborate (orthogonal).

Design of Integrative Omics Study

Vertical or paired design

- Multiple omics data types from the same N subjects.
- Network of association among variables.

Horizontal or meta-analysis design

- Single omics data type from multiple studies/cohorts
- Cross-laboratory or cross-platform comparisons

Heterogeneous or unpaired design

- Different omics data collected study by study
- Prioritization of candidates for individual data.

Eidem et al. 2018. BMC Med Genomics. PMID:30453955

A	VERTICAL	HOR	IZONTAL	в	NEITHER
experiment genomics	s samples	experiments generics	samples	experin genon	nents samples
	*****	mi	****		
transcriptomic	*****	gmonia	*****	transcrip	
epigenomics	*****	genomics	:::::	epigeou • M	
proteomics	*****	genomics	:::::	proteor	
metabolomics	*****	genomics	*****	metabol	
	integratio	on methods	100.000	i	ntegration methods
	multi genomic var domain knowled	staged iation analysis ge-guided analysis		bi	alternative andidate gene overlap pathway analysis ayesian network analysis machine learning rank aggregation
	meta-dir concatenation-l	mensional based integration			desirability
L	transformation- model-base	based integration d integration			15

Pathway-based integration

- Datasets are analyzed individually using selected candidates, e.g., differentially expressed genes, metabolites, proteins.
- Integration is performed at the pathway level what pathways are overlapped?
- Tools: MetaboAnalyst, iPEAP, MetScape, MetaCore.

Network-based integration

- Multiple datasets are combined simultaneously and globally
- Pathway analysis tools are used to interpret the integrated data.
- Examples: 30mics, mixOmics, xMWAS.

Pathway-based integration

- Datasets are analyzed individually using selected candidates, e.g., differentially expressed genes, metabolites, proteins.
- Integration is performed at the pathway level what pathways are overlapped?
- Tools: MetaboAnalyst, iPEAP, MetScape, MetaCore.

Network-based integration

- Multiple datasets are combined simultaneously and globally
- Pathway analysis tools are used to interpret the integrated data.
- Examples: 30mics, mixOmics, xMWAS.

Pathway-based Integration: General Workflow

Pathway-based Integration: Common Tools

Name	Platform	Function	Link	Reference
IMPaLa	Web	Joint pathway analysis	http://impala.molgen.mpg.de	Kamburov et al. (2011)
Ingenuity Pathway Analysis	License, Web, Local	Joint pathway analysis and mapping	Ingenuity Pathway Analysis QIAGEN Digital Insights	Krämer et al. (2014)
MetaCore	License, Web, Local	Functional, joint and network pathway analysis	https://portal.genego.com/	
InCroMAP	JAVA	Joint pathway (enrichments, visualization) visualization	http://www.ra.cs.uni- tuebingen.de/software/InCroM AP/index.htm	Wrzodek et al. (2012)
MetaboAnalyst	Web	Joint pathway analysis and mapping, Network analysis	https://www.metaboanalyst.ca/	Xia et al. (2009)

Please upload a gene list and a metabolite list below

<u>Tight integration by combining queries</u> in which genes and metabolites are pooled into a single query and used to perform enrichment analysis within their "pooled universe".

Loose integration by combining p values in which enrichment analysis is performed separately for genes and metabolites in their "individual universe", and then individual p-values are combined via **weighted Z-tests.**₂₀

Pathway-based Integration: Pros & Cons

Advantages

- User-friendly, many web-based.
- Easy to reduce and prioritize each dataset by user-defined cutoffs.
- Easy to visualize and interpret in biological context.
- More confidence in overlapped pathways.
- Can be applied in unpaired study design datasets do not have to be collected from the same cohort.

Limitations

- Rely on prior knowledge defined pathways and database.
- Limited application in relatively new field, such as microbiome.
- Bias toward certain pathways, gene sets or diseases.
- Lack of direct information on interactions.
- Cannot discover new interactions.

Pathway-based integration.

- Datasets are analyzed individually using selected candidates, e.g., differentially expressed genes, metabolites, proteins.
- Integration is performed at the pathway level what pathways are overlapped?
- Tools: MetaboAnalyst, iPEAP, MetScape, MetaCore.

Network-based integration

- Multiple datasets are combined simultaneously and globally.
- Pathway analysis tools are used to interpret the integrated data.
- Examples: 30mics, mixOmics, xMWAS.

Barabási. Network Science

Protein networks: proteins that are linked to each other by physical (binding) interaction; based on immunoprecipitation and high-throughput mass spectrometry.

Metabolic networks: metabolites that are linked if they participate in the same biochemical reactions.

RNA networks: which capture the role of interactions between regulatory RNAs, such as small non-coding microRNAs (miRNAs) and small interfering RNAs (siRNAs), and DNA in regulating gene expression.

Regulatory networks: directed links represent either regulatory relationships between a transcription factor and a gene, or post-translational modifications

Barabási et al. 2011, Nat Rev Genet: doi: 10.1038/nrg2918

KEGG: Kyoto Encyclopedia of Genes and Genomes

25

Pentose phosphate pathway

MetaboAnalyst 5.0: Network Analysis Tool – driven by existing biological knowledge

Albert László Barabási NETWORK SCIENCE

Development of Network Science: A data-driven approach

http://networksciencebook.com/

REVIEWS

Network medicine: a network-based approach to human disease

Albert-László Barabási*15, Natali Gulbahce*11 and Joseph Loscalzo5

Abstract | Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular and intercellular network that links tissue and organ systems. The emerging tools of network medicine offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships among apparently distinct (patho)phenotypes. Advances in this direction are essential for identifying new disease genes, for uncovering the biological significance of disease-associated mutations identified by genome-wide association studies and full-genome sequencing, and for identifying drug targets and biomarkers for complex diseases.

Elements of network theory

Basic principle: Real networks (*e.g.* found in natural, technological and social systems) are not random, but follow a series of basic organizing principles in their structure and evolution that distinguish them from randomly linked networks.

Scale-free property: many real networks, including human protein–protein interaction and metabolic networks, are scale free. The probability of observing a high-degree node, or hub, is several orders of magnitude higher in a scale-free than in a random network.

Hubs: a few highly connected nodes.

Scale-free network: degree distribution follows a power law

An example power-law graph that demonstrates ranking of popularity. To the right is the long tail, and to the left are the few that dominate.

(a) Random network

(b) Scale-free network

Random vs. Scale-free Networks

National Highway Network

VS

Air-traffic network

Barabási. Network Science

Towards modular biology

Communities in E.coli Metabolic Networks

Biology must move beyond its focus on single genes. It must explore instead how groups of molecules form functional modules to carry out a specific cellular functions. – Lee Harwell

A network's community structure is uniquely encoded in its wiring diagram.

A community is a locally dense connected subgraph in a network.

Randomly wired networks lack an inherent community structure.

For a given network the partition with maximum modularity corresponds to the optimal community structure.

Barabási. Network Science

Topology-based Community Detection

Multilevel community detection:

- i. Each node is assigned to a different community;
- ii. Each node is moved to a community with which it achieves the highest positive contribution to modularity
- iii. Step 2 is repeated for all nodes until no improvement can be achieved
- iv. Each community after step 3 is now considered a node and step 2 is repeated until there is a single node left or the modularity can no longer be improved

Centrality Analysis

Centrality: Measure of importance of a node in the network.

Common centrality measures:

- Degree: based on the number of connections.
- Eigenvector: based on the number and quality of connections. It assigns relative scores to all nodes in the network based on the concept that connections to high-scoring nodes contribute more to the score of the node in question than equal connections to lowscoring nodes.
- Betweenness: based on the extent to which a node lies on the path between other nodes. Betweenness centrality quantifies the number of times a node acts as a bridge along the shortest path between two other nodes.
- Closeness: average length of the shortest path between the node and all other nodes in the graph. The more central a node is, the closer it is to all other nodes.

Differential centrality analysis: difference between centrality under two conditions (e.g. |centrality_{exposed} – centrality_{control}|.

Relevance Network

Network of highly-correlated biomedical/clinical entities (Butte et al. 2000)

- Metabolomics x Proteomics, Transcriptomics x Proteomics, Metabolomics x Microbiome, Metabolomics x Clinical outcome, etc.
- Can generate a bipartite graph network for visualization.

Integration of faecal 16S genomic DNA amplicon data with physical measurement and metabolomics data.

Transcriptome-metabolome wide association study (TMWAS)

Data-driven Integration: General Workflow

Univariate methods: Pairwise Pearson or Spearman correlation between different omics data.

Name	Platform	Function	Link	Reference
30mics	Web	Correlation analysis and network visualization of up to three data set	http://3omics.cmdm.tw/	Kuo et al. (2013)
MetabNet	R	Correlation analysis of metabolites	https://rdrr.io/github/kuppal2/x msPANDA/man/metabnet.html	Uppal et al. (2015)

Multivariate methods: Multivariate regression techniques such as partial least squares (PLS), sparse partial least squares regression (sPLS), multilevel sparse partial least squares (msPLS) regression, etc.

Name	Platform	Function	Link	Reference
mixOmics	R	Provides a wide range of linear multivariate methods for data exploration, integration, dimension reduction and visualization of biological data sets	http://mixomics.org/	Rohart et al. (2017)
xMWAS	R, web	Data-driven integration with multivariate regression and differential network analysis	https://kuppal.shinyapps.io/xm was (Online) and http://github.com/kuppal2/xM WAS/ (R)	Uppal et al. (2018)

PLS and sPLS Regression in Data-driven Integration

Partial Least Squares (PLS) regression is not limited to uncorrelated variables. It can handle many noisy, collinear (correlated) and missing variables, and can also simultaneously model several response variables Y. <u>Regression mode</u>: the goal is to predict Y from X (Y and X play an asymmetric role). <u>Canonical mode</u>: X and Y play a symmetric role.

Sparse Partial Least Squares (sPLS) regression: In addition to PLS, sPLS performs simultaneous variable selection in the two data sets, by introducing LASSO penalization on the pair of loading vectors. The user has to specify the number of variables to select, *keepX*, *keepY*.

Multilevel sPLS: accounts for repeated measurements.

xMWAS Workflow with Differential Network Analysis

xMWAS (Web): Step 1 – Uploading Data

http://kuppal.shinyapps.io/xmwas/

xMWAS - a data-driven integration and network analysis tool (v0.552)

	Input file for dataset A ('.csv' or '.txt', 100MB limit)	Name for dataset A:
nput Files	Browse No file selected	datasetA
choose Files (see help and support)	Input file for dataset B ('.csv' or '.txt', 100MB limit)	Name for dataset B:
	Browse No file selected	→ Up to 4 data sets
Data preparation and filtering	Add more datasets: + -	
. Integration and association analysis	Choose a class labels file ('.csv' or '.txt'):	
. Centrality analysis	Browse No file selected	More Options

xMWAS (Web): Step 2 – Data Preprocessing

http://kuppal.shinyapps.io/xmwas/

Relative Standard Deviation (RSD) Threshold (rows):

Input Files	1	
Choose Files (see help and support)	Maximum #datasetA variables to select based on RSD (change according to your dataset):	Maximum #datasetB variables to select based on RSD (change according to your dataset):
Parameter Settings	10000	10000
1. Data preparation and filtering	Minimum non-missing sample ratio (rows):	How are the missing values represented in the data?:
2. Integration and association analysis	0	0
3. Centrality analysis		
4. Graphical options		

Start processing

Lownload results

-

xMWAS (Web): Step 3 – Integration parameters

http://kuppal.shinyapps.io/xmwas/

	Pairwise integrative analysis	
Input Files	Choose a data integration method:	Choose PLS mode (not applicable to
Choose Files (see help and support)	PLS: Partial least squares	RCC option):
		regression
Parameter Settings	Number of components to use in PLS model:	Find optimal number of PLS components? (Note: turning this option
4. Data and and fillering	5	ON may increase run time)
1. Data preparation and filtering		🔿 True 🔘 False
2. Integration and association analysis	Association analysis	
3. Centrality analysis	Correlation Threshold:	P-value Threshold For Student's T-test:
4. Graphical options	0.4	0.05

Start processing

Lownload results

xMWAS (Web): Step 4 – Methods for Centrality

http://kuppal.shinyapps.io/xmwas/

duction Analysis Help and Support	
	Method for centrality analysis:
Input Files	eigenvector -
Choose Files (see help and support)	
Parameter Settings	
1. Data preparation and filtering	
2. Integration and association analysis	
3. Centrality analysis	
4. Graphical options	

Start processing

Lownload results

xMWAS (Web): Step 5 – Graphic Options

	http://kuppal.shinyapp	os.io/xmwas/	
	Size of the Labels:		
Input Files	0.25		
Choose Files (see help and support)	Size of the Nodes:	s	eed for Random Number Generator:
Parameter Settings	7		100
1. Data preparation and filtering	(any numeric value >0 or -1 to use all):	n the network	
2. Integration and association analysis	-1		
3. Centrality analysis	Use dataset A as reference? ○ True ● False		
4. Graphical options	Node shape for dataset A:	Ν	lode shape for dataset B:
	square 🗸		circle 🔹
	Node shape for dataset C:	Ν	lode shape for dataset D:
-	triangle <		star 🔹

Start processing

Lownload results

xMWAS (Web): Step 6 – Download and Enjoy!

Name

Data-driven Association-based Integration: Pros & Cons

Advantages

- Avoid bias generated by prior knowledge.
- Feasible in any field with any level of curated database.
- Keeps information on interactions.
- Provides systems-level overview and visualization.
- Reveals novel hypothesis useful for experimental studies.

Limitations

- Must use paired data collected from the same cohort of samples
- Less user-friendly.
- Higher computational requirement.
- Biological interpretation challenges.

Case Study: *Haemophilus ducreyi* Infection Induces Oxidative Stress, Central Metabolic Changes, and a Mixed Pro- and Antiinflammatory Environment in the Human Host

Collaboration between UAB, Emory and Indiana Univ.

Julie A. Brothwell, Kate R. Fortney, Hongyu Gao, Landon S. Wilson, Caroline F. Andrews, Tuan M. Tran, Xin Hu, Teresa A. Batteiger, Stephen Barnes, Yunlong Liu, Stanley M. Spinola

Healthy adult volunteers are infected with *H. ducreyi* on the upper arm until they develop pustules. Here, we characterized host-pathogen interactions in pustules using transcriptomics and metabolomics and examined interactions between the host transcriptome and metabolome using integrated omics.

Metabolome and human transcriptome interaction networks

ELOVL2: a key regulator in inflammation

PLS regression; correlation P < 0.05 $|\rho| > 0.75$

Each color represents a community

Metabolites (A: positive ions;
 B: negative ions)

OHost transcripts

ELOVL2, which elongates very long polyunsaturated fatty acids, is correlated with changes in fatty acid metabolism, and anti-inflammatory metabolites.

The role of lipid synthesis in infection

DOI: <u>https://doi.org/10.1128/mbio.03125-22</u>

xMWAS Integration: Pros & Cons

Advantages

- Do not rely on prior knowledge defined pathways and database.
- Can be used in relatively new field.
- No bias toward certain pathways, gene sets or diseases.
- Can provide direct information on interactions and discover new biological mechanisms.

Limitations

- Require collection of multi-omics data on the same or very similar subjects.
- Bipartite Does not provide intra-correlations within the same layer.
- Does not consider directionality of interactions, weight of interactions or feed-back loops.

Machine Learning Methods for Network Reconstruction

clusters.

valued.

Common Examples of ML Algorithms in Data Integration

Name	Function	Reference
Support vector machine (SVM)	Creates a linear hyperplane, maintaining the largest possible distance between different classes of example data points	Boser et al., 1992, Guyon et al., 1993, Vapnik et al., 1997
Random forest (RF)	Composed of many decision trees. Each tree is grown using a training set and a random vector and works as a classifier. Each tree votes for the most popular class, and the most voted class is chosen	Breiman (2001)
Autoencoders	Consists of an encoder and a decoder. The encoder extracts features from large input data, and the decoder tries to construct an output very similar to the input using only the extracted features. In this way, it excludes the redundant data.	Murphy (2012)

Random Forest Classifier

https://medium.com/nerd-for-tech/random-forest-sturdy-algorithm-d60b9f9140d4 https://towardsdatascience.com/understanding-random-forest-58381e0602d2

Performance assessment

Tree-based Network Reconstruction

GENIE3: Assuming that the expression of each gene in a given condition is a function of the expression of the other genes in the network (plus some random noise) for reconstruction of Gene Regulatory Networks

Output gene Input gene

Huynh-Thu et al. 2010: doi.org/10.1371/journal.pone.0012776

Multi-omics data integration reveals metabolome as the top predictor of the cervicovaginal microenvironment

Bokulich et al. 2022 https://doi.org/10.1371/journal.pcbi.1009876

Multi-omics data integration reveals metabolome as the top predictor of the cervicovaginal microenvironment

Bokulich et al. 2022 <u>https://doi.org/10.1371/journal.pcbi.1009876</u>

Overfitting and Underfitting

Overfitting happens when a model learns the detail and noise in the training data to the extent that it negatively **impacts** the performance of the model on new data. This means that the noise or random fluctuations in the training data is picked up and learned as concepts by the model. More likely with nonparametric and nonlinear models that **have more flexibility** when learning a target function.

Solution:

1. Prune a decision tree after it has learned in order to remove some of the detail it has picked up or set parameters or techniques to limit and constrain how much detail the model learns.

2. Use matrices of co-expression network modules rather than all the data.

3. Use a resampling technique (e.g. k-fold cross validation) to estimate model accuracy

4. Use a validation dataset.

Underfitting: a model that can neither model the training data nor generalize to new data.

ML Data Integration: Pros & Cons

Advantages

- Can deal with very large, high-dimensional and heterogenous datasets.
- Useful in non-linear complex predictive analysis.
- No human intervention needed (automation).
- Do not require existing knowledge.
- Reveals novel hypothesis.
- Can be improved over time.

Limitations

- High computational demand.
- Prone to overfitting.

An overview of general omics data types and study design is discussed. Various tools and techniques are available for integrating and visualizing multi –omics data.

High dimensional data with collinearity and missing values are typical challenges for omics integration. Each statistical strategy has advantages and limitations; choose based on your research questions.

The data-driven integration approach based on network theory is useful in studying the global behavior of the systems and can lead to discovery of new biological connections.

THANK YOU!

QUESTIONS: XIN.HU2@EMORY.EDU

AI Based Multi OMICS Integration Design

patient-specific information.

Biswas and Saikat Chakrabarti 2020 Frontiers in Oncology

AI Based Data Integration: Pros & Cons

Advantages

- Can deal with very large, high-dimensional and heterogenous datasets.
- Useful in non-linear complex predictive analysis.
- No human intervention needed (automation).
- Do not require existing knowledge.
- Reveals novel hypothesis.
- Can be improved over time.

Limitations

- High computational demand.
- Prone to overfitting.

"...is well established and truly powerful, but it cannot be used as a black-box."

Nine quick tips for analyzing network data

Vincent Miele , Catherine Matias, Stéphane Robin, Stéphane Dray

Published: December 19, 2019 • https://doi.org/10.1371/journal.pcbi.1007434

Article A	uthors	Metrics	Comments	Media Coverage
¥				
Introduction	Figures			
Tip 1: Formulate questions first; use networks later	a) b)	a)	b)	
Tip 2: Categorize your network data correctly	4750 C			
Tip 3: Use specific network analysis software				
Tip 4: Be aware that network visualization can be useful but possibly misleading	Citation: M	liele V, Matias C, Rob	in S, Dray S (2019) Nine qui	ck tips for analyzing
Tip 5: Avoid blind use of metrics; understand	network data. PLoS Comput Biol 15(12): e1007434. https://doi.org/10.1371/journal.pcbi.1007434			
Tip 6: Avoid blind use of	Editor: Francis Ouellette, University of Toronto, CANADA			
clustering methods; check their difference	Published: December 19, 2019			
instead Tip 7: Don't choose the easy way when simulating networks	Copyright: © 2019 Miele et al. This is an open access article distributed under the terms of the <u>Creative Commons Attribution License</u> , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.			
Tip 8: Reconsider the data to build multiple network layers	Funding: F (CNRS) to S (INRA) to S	Funding: Funding was provided by the French National Center for Scientific Research (CNRS) to SD, CM, and VM; the French National Institute for Agricultural Research (INRA) to SR and the French National Research Agency (ANR) grant ANR-18-CE02-		
Tip 9: Dive into the	0010-01 Ec	oNet to SD, CM, VM,	and SR. The funders had not	o role in study design, d

Modules: topological modules that represent highly interlinked local regions in the network.

Intra-modular hubs (blue nodes) mostly connect nodes within the same module and have relatively short connection distances; characterized by the PLS1. Intramodular hubs (red nodes) have a more diverse connectivity profile with connections extending long distances and connecting nodes from different modules; characterized by the PLS2. Size and color saturation of the nodes in the connectome corresponds to the regional scores on PLS1 (Intra-modular hub) and PLS2 (Intermodular hub) to represent the spatial pattern of transcriptional profiles [adapted and modified from (Vértes et al., 2016)]

